PhD course: Statistical Models

Prof. Bruno Scarpa, Prof. Mauro Bernardi, Prof. Carlo Gaetan, Prof. Stefano Mazzuco, Prof. Davide Risso

Department of Statistical Sciences - University of Padova Academic Year 2023-2024

This course will focus on advanced statistical models: parametric and nonparametric models accounting for dependence among observations and variables and for complex structures of data.

List of topics

- $\checkmark~$ What is a statistical model
 - Path of discovery
 - Modelling approach
 - Two cultures
 - To explain or to predict
- $\checkmark\,$ Nonparametric statistics
 - Nonparametric estimation of distribution functions and quantiles
 - Jackknife and Bootstrap
 - Density estimation
 - Nonparametric regression: kernel smoother and local regression
 - Nonparametric regression: orthogonal series estimators
 - Nonparametric regression: splines
 - Linear smoothers
 - Multivariate local regression
 - Additive models
- $\checkmark~$ Experimental design
 - Basic techniques: randomization, blocking, factorial designs.
 - Modern techniques: sequential design, bandits.
- $\checkmark\,$ Statistical models for high-dimensional data

- Empirical Bayes techniques
- Ridge Regression
- Lasso and its extensions
- Inference in the context of the lasso
- Graphical models
- $\checkmark\,$ Reproducible research and R best practices
- $\checkmark\,$ Random effects, multilevel models, hierarchical models
 - Linear mixed models inference
 - Generalized mixed models inference
 - Diagnostic of mixed models
 - Bayesian hierarchical models
 - Generalized Estimating Equation
 - Hierarchical GAM
 - Nonlinear mixed models
- $\checkmark\,$ From linear to nonparametric regression
 - Bayesian regression model with alternative prior specifications;
 - Generalised linear models;
 - Model selection & sparsity;
 - Gaussian process regression;
 - Examples.
- \checkmark Time series models
 - Multivariate regression models;
 - Dynamic autoregressive models;
 - Bayesian inference for autoregressive models;
 - Prior shrinkage and variable selection;
 - Factor analysis;
 - Kalman Filter and State Space Models (Siem Koopman)