PhD course: Statistical Models

Prof. Bruno Scarpa, Prof. Mauro Bernardi, Prof. Carlo Gaetan, Prof. Stefano Mazzuco, Prof. Davide Risso

Department of Statistical Sciences - University of Padova
Academic Year 2023-2024

This course will focus on advanced statistical models: parametric and nonparametric models accounting for dependence among observations and variables and for complex structures of data.

List of topics

\checkmark What is a statistical model

- Path of discovery
- Modelling approach
- Two cultures
- To explain or to predict
\checkmark Nonparametric statistics
- Nonparametric estimation of distribution functions and quantiles
- Jackknife and Bootstrap
- Density estimation
- Nonparametric regression: kernel smoother and local regression
- Nonparametric regression: orthogonal series estimators
- Nonparametric regression: splines
- Linear smoothers
- Multivariate local regression
- Additive models
\checkmark Experimental design
- Basic techniques: randomization, blocking, factorial designs.
- Modern techniques: sequential design, bandits.
\checkmark Statistical models for high-dimensional data
- Empirical Bayes techniques
- Ridge Regression
- Lasso and its extensions
- Inference in the context of the lasso
- Graphical models
\checkmark Reproducible research and R best practices
\checkmark Random effects, multilevel models, hierarchical models
- Linear mixed models inference
- Generalized mixed models inference
- Diagnostic of mixed models
- Bayesian hierarchical models
- Generalized Estimating Equation
- Hierarchical GAM
- Nonlinear mixed models
\checkmark From linear to nonparametric regression
- Bayesian regression model with alternative prior specifications;
- Generalised linear models;
- Model selection \& sparsity;
- Gaussian process regression;
- Examples.
\checkmark Time series models
- Multivariate regression models;
- Dynamic autoregressive models;
- Bayesian inference for autoregressive models;
- Prior shrinkage and variable selection;
- Factor analysis;
- Kalman Filter and State Space Models (Siem Koopman)

